

ENVIRONMENTAL, INC.

96B Cogswell Avenue, Pell City, Alabama 35125 *Environmental, Remediation, and Ecological Consultants*

December 12, 2023

Mr. Darren Hamrick Sain Associates Two Perimeter Park South, Suite 500 Birmingham, Alabama 35243

SUBJECT: Jurisdictional Evaluation Report Whitehouse Road Property Jasper, Walker County, Alabama Environmental, Inc. Project No.: SAI01E2307

Mr. Hamrick:

Environmental, Inc. has completed the requested U.S. Army Corps of Engineers (USACE) Jurisdictional Evaluation for the Whitehouse Road Property in Jasper, Walker County, Alabama. It is our professional opinion that the property contains two streams and one wetland that would be considered jurisdictional by the USACE. It is also EEI's professional opinion that seven stream channels located within the project area are classified as ephemeral and would not currently be considered under the jurisdiction of the USACE. The enclosed Jurisdictional Evaluation Report includes the site location, project resources, jurisdictional evaluation methods, and jurisdictional findings.

Environmental, Inc. appreciates the opportunity to provide this information. If you have any questions regarding this report or if you need additional information, please contact us at (205) 629-3868.

Sincerely,

ENVIRONMENTAL, INC.

Kyle Paris Senior Project Biologist

Enc. Jurisdictional Evaluation Report

Phone: (205) 629-3868 • Fax: (877) 847-3060

ENVIRONMENTAL, INC.

96B Cogswell Avenue, Pell City, Alabama 35125 *Environmental, Remediation, and Ecological Consultants*

> JURISDICTIONAL EVALUATION REPORT Whitehouse Road Property Jasper, Walker County, Alabama Environmental, Inc. Project No.: SAI01E2307

> > Prepared for: Sain Associates, Inc. Birmingham, Alabama & Jasper Industrial Development Board

> > > December 12, 2023

Prepared by: ENVIRONMENTAL, INC.

Kyle Pain

Kyle Paris Senior Project Biologist

had Stinnett

Chad Stinnett Principal Scientist

Phone: (205) 629-3868 • Fax: (877) 847-3060

TABLE OF CONTENTS

1.0	INTRODUCTION	2
	1.1 SITE LOCATION	2 2
	1.3 SOILS	2
2.0	FIELD EVALUATION METHODS	3
3.0	FINDINGS	3
	3.1 JURISDICTIONAL STREAMS	1
	3.2 JURISDICTIONAL WETLANDS	1
	3.3 NON-JURISDICTIONAL STREAMS (BASED ON CURRENT INTERPRETATION OF CONFORMING RULE)	5
4.0	CONCLUSION	5
5.0	REFERENCES / INFORMATION SOURCES	5
6.0	SPECIAL TERMS AND CONDITIONS	7

FIGURES

Figure 1	Site Location Map
Figure 2	Topographic Map
Figure 3	National Wetlands Inventory Map
Figure 4	Soil Survey Map
Figure 5	Aerial Photograph
Figure 6	Jurisdictional Determination Map

APPENDICES

- Appendix A Stream Data Forms and Photographs
- Appendix B Wetland Data Form and Photograph
- Appendix C Upland Data Forms

1.0 INTRODUCTION

1.1 SITE LOCATION

The project area is located off of Whitehouse Road approximately 1.75 miles northwest of the intersection of I-22 and Industrial Parkway in Jasper, Walker County, Alabama (Figure 1). The project area is depicted on the United States Geological Survey 7.5-minute Topographic Quadrangle "Jasper, Alabama," dated 1981, in Sections 15 and 22, Township 14 South, Range 7 West. More specifically, the project area is centered at latitude 33.81823° north and longitude 87.25817° west (Figure 2). The project area is located in the Town Creek-Cane Creek drainage basin of the Mulberry watershed (HUC 03160109).

1.2 SITE DESCRIPTION AND BACKGROUND

The project area consists of approximately 95 acres of open and forested land. Vegetation within the project areas consist primarily of loblolly pine (*Pinus taeda*), white oak (*Quercus alba*), water oak (*Quercus nigra*), scarlet oak (*Quercus coccinea*), willow oak (*Quercus phellos*), red maple (*Acer rubrum*), sweetgum (*Liquidambar styraciflua*), black willow (*Salix nigra*), pignut hickory (*Carya glabra*), mockernut hickory (*Carya tomentosa*), winged elm (*Ulmus alata*), Eastern red cedar (*Juniperus virginiana*), Chinese privet (*Ligustrum sinense*), deerberry (*Vaccinium stamineum*), muscadine (*Muscadinia rotundifolia*), poison ivy (*Toxicodendron radicans*), Japanese honeysuckle (*Lonicera japonica*), roundleaf greenbrier (*Smilax rotundifolia*), goldenrod (*Solidago spp.*), dogfennel (*Eupatorium capillifolium*), dewberry (*Rubus pensilvanicus*), broomsedge (*Andropogon virginicus*), giant cane (*Arundinaria gigantea*), longleaf woodoats (*Chasmanthium sessiliflorum*), and Christmas fern (*Polystichum acrostichoides*).

1.3 SOILS

According to the United States Department of Agriculture's (USDA) Web Soil Survey Internet website, site soils are classified as Nauvoo and Sipsey soils, 6 to 12 percent slopes; Sunlight-Townley complex, 15 to 45 percent slopes; and Townley silt loam, 6 to 15 percent slopes.

1 able 1: Soll Survey							
Walker County							
Soil	Symbol	Drainage Class	Landforms	Frequency of Flooding	Hydric Rating and Position	Depth to Water Table (inches)	
Nauvoo and Sipsey soils, 6 to 12 percent slopes	NSC	Well drained	Hillslopes	None	No	> 80	
Sunlight- Townley complex, 15 to 45 percent slopes	StE	Well drained	Sunlight: Hillslopes Townley: Ridges	None	No	> 80	
Townleysiltloam,6topercent slopes	ТоD	Well drained	Hillslopes	None	No	> 80	

2.0 FIELD EVALUATION METHODS

Environmental, Inc. (EEI) personnel reviewed the USGS 7.5-minute "Jasper, Alabama" Topographic quadrangle, the National Wetlands Inventory Map (Figure 3), the USDA Web Soil Survey (Figure 4), and a recent aerial photograph (Figure 5) for the site. EEI personnel conducted the jurisdictional evaluation in November and December of 2023. The following briefly describes the field procedures conducted during site activities.

EEI conducted a reconnaissance of the property within the subject site boundaries as well as on adjacent properties to assist in describing representative vegetation, hydrology, and soils. The subject site was observed for jurisdictional wetland indicators and Waters of the U.S. The field delineation was performed in accordance with the guidelines established in the <u>Field Guide for Wetland Delineation</u>, <u>1987 Corps of Engineers Manual</u> (Manual) and the <u>Regional Supplement to the Corps of Engineers</u> Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0) (April 2012).

3.0 FINDINGS

The *Revised 2023 Waters of the United States Rule* (Conforming Rule), effective September 8, 2023 revised the definition of "Waters of the United States" (WOTUS) to encompass territorial seas, traditional navigable waters, interstate waters, and impoundments of those waters. Also included in the definition of WOTUS are tributaries and intrastate lakes and ponds that are relatively permanent, standing or continuously flowing bodies of water with a continuous surface connection to other WOTUS features. The implications of the revised definition of WOTUS are that ephemeral streams (non-relatively

permanent waters) and streams/wetlands with no discrete continuous surface connection to jurisdictional features are currently considered non-jurisdictional.

It is EEI's professional opinion that the project area contains two streams and one wetland that would be considered jurisdictional by the USACE. It is EEI's professional opinion that seven stream channels located within the project area are classified as ephemeral and would not currently be considered under the jurisdiction of the USACE (Figure 6). Appendix A contains representative photographs and North Carolina Department of Environmental Quality Stream Identification Forms of the identified streams, and Appendix B contains a representative photograph and Wetland Delineation Form for the identified wetland. Appendix C contains representative data sheets of the upland portions of the project area.

3.1 JURISDICTIONAL STREAMS

Table 2: Jurisdictional Streams								
Stream Name	Classification	OHWM ¹	Center Coordinates	pprox Linear Feet in				
				Project Area				
Stream 2	Intermittent	1-5 feet	33.81705° N	1,486				
(Intermittent)			87.26086° W					
Stream 6	Intermittent	1-3 feet	33.81586° N	484				
(Intermittent)			87.25995° W					

¹Ordinary High Water Mark

Stream 2 (Intermittent) is a continuation of Stream 2 (Ephemeral) and flows south for approximately 1,486 linear feet before exiting the project area on the southwestern boundary. Stream 2 (Intermittent) is centered at latitude 33.81705° north and longitude 87.26086° west, has a defined OHWM of 1 to 5 feet, and is classified as intermittent.

Stream 6 (Intermittent) is a continuation of Stream 6 (Ephemeral) and flows west for approximately 484 linear feet before flowing into Stream 2 (Intermittent). Stream 6 (Intermittent) is centered at latitude 33.81586° north and longitude 87.25995° west, has a defined OHWM of 1 to 3 feet, and is classified as intermittent.

3.2 JURISDICTIONAL WETLANDS

Wetland 1 is centered at latitude 33.81595° north and longitude 87.25691° west. Wetland 1 is classified as an emergent wetland abutting Stream 8. Wetland 1 contains hydrophytic vegetation including bushy bluestem (*Andropogon glomeratus*), giant plumegrass (*Saccharum giganteum*), tall goldenrod (*Solidago gigantea*), and common rush (*Juncus effusus*). Wetland 1 is approximately 0.02 acres in size and was saturated seven inches from the surface at the time of the evaluation.

3.3 NON-JURISDICTIONAL STREAMS (BASED ON CURRENT INTERPRETATION OF CONFORMING RULE)

	Table 3. Non-surficienti bir camp						
Stream Name	Classification	OHWM ¹	Center Coordinates	pprox Linear Feet in			
				Project Area			
Stream 1	Ephemeral	1-4 feet	33.82146° N	757			
			87.26005° W				
Stream 2	Ephemeral	1-2 feet	33.8184° N	221			
(Ephemeral)			87.25997° W				
Stream 3	Ephemeral	1-2 feet	33.81864° N	674			
			87.26116° W				
Stream 4	Ephemeral	1-2 feet	33.81766° N	641			
			87.25936° W				
Stream 5	Ephemeral	0.5-2 feet	33.81627° N	526			
	-		87.26134° W				
Stream 6	Ephemeral	0.5-2 feet	33.81568° N	691			
(Ephemeral)	-		87.2574° W				
Stream 7	Ephemeral	1-3 feet	33.81701° N	981			
	_		87.25854° W				

Table 3: Non-Jurisdictional Streams

¹Ordinary High Water Mark

Stream 1 originates along the northwestern boundary of the project area and flows north for approximately 757 linear feet before flowing into a culvert under 29th Street E. Stream 1 is centered at latitude 33.82146° north and longitude 87.26005° west, has a defined OHWM of 1 to 4 feet, and is classified as ephemeral.

Stream 2 (Ephemeral) originates in the central-western portion of the project area and flows west for approximately 221 linear feet before transitioning into Stream 2 (Intermittent). Stream 2 (Ephemeral) is centered at latitude 33.8184° north and longitude 87.25997° west, has a defined OHWM of 1 to 2 feet, and is classified as ephemeral.

Stream 3 originates in the central-western portion of the project area and flows southeast for approximately 674 linear feet before flowing into Stream 2 (Intermittent). Stream 3 is centered at latitude 33.81864° north and longitude 87.26116° west, has a defined OHWM of 1 to 2 feet, and is classified as ephemeral.

Stream 4 originates in the central portion of the project area and flows southwest for approximately 641 linear feet before flowing into Stream 2 (Intermittent). Stream 4 is centered at latitude 33.81766° north and longitude 87.25936° west, has a defined OHWM of 1 to 2 feet, and is classified as ephemeral.

Stream 5 originates in the southwestern portion of the project area and flows southeast for approximately 526 linear feet before flowing into Stream 2 (Intermittent). Stream 5 is centered at latitude 33.81627° north and longitude 87.26134° west, has a defined OHWM of 0.5 to 2 feet, and is classified as ephemeral.

Stream 6 (**Ephemeral**) originates in the southeastern portion of the project area and flows southwest for approximately 243 linear feet before the bed and bank dissipates and the stream flows laminarly across Wetland 1 and then reconstitutes and continues southwest for an additional 135 linear feet before exiting the project area on the southeastern boundary. Stream 6 (Ephemeral) then flows across the south-central boundary of the project area and continues for an additional 313 linear feet before transitioning into Stream 6 (Intermittent). Stream 6 (Ephemeral) is centered at latitude 33.81568° north and longitude 87.2574° west, has a defined OHWM of 0.5 to 2 feet, and is classified as ephemeral.

Stream 7 originates in the central portion of the project area and flows southwest for approximately 981 linear feet before flowing into Stream 6 (Intermittent). Stream 7 is centered at latitude 33.81701° north and longitude 87.25854° west, has a defined OHWM of 1 to 3 feet, and is classified as ephemeral.

4.0 CONCLUSION

Environmental, Inc. performed a USACE jurisdictional evaluation in accordance with federal guidelines of the subject property in Walker County, Alabama. Based on the results of the field evaluation and site research, it is EEI's professional opinion that the project area contains two streams and one wetland that would be considered jurisdictional by the USACE. It is also EEI's professional opinion that seven stream channels located within the project area are classified as ephemeral and would not currently be considered under the jurisdiction of the USACE. It should be noted that the USACE has the final authority regarding jurisdictional designation and permitting requirements.

5.0 REFERENCES / INFORMATION SOURCES

Research and evaluation of the environmental conditions at the site and surrounding properties included utilization of the following sources:

- 1. United States Geological Survey 7.5-minute Topographic Quadrangle "Jasper, Alabama" depicting the site location.
- 2. National Wetland Inventory Map available at the U.S. Fish and Wildlife Service Internet website.
- 3. Soil information available through the USDA's Web Soil Survey Internet website.
- 4. Aerial photographs available through Google Earth.
- 5. US Army Corps of Engineers Field Guide for Wetland Delineation, 1987 Corps of Engineers Manual.
- 6. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0) (April 2012).

6.0 SPECIAL TERMS AND CONDITIONS

Environmental, Inc. is not responsible for the conclusions made by others based on this assessment. While conducting this assessment, Environmental, Inc. observed the degree of professional skill and care generally exercised by other environmental consultants undertaking similar studies at the same time and in the same geographic area, as well as under similar circumstances and conditions. Environmental Inc.'s conclusions regarding the subject property are based on available documentation, interpretation of the collected data, and our observations of existing conditions. Environmental Inc.'s findings could be invalidated due to subsequent changes in the land use, vegetation alteration, hydrologic alteration, or other activities on or near the site. The findings and conclusions of Environmental Inc. must be considered as probabilities, not as scientific certainties, based on our professional judgment regarding the significance of the information gathered during the course of this site investigation. It is important to understand that the US Army Corps of Engineers has the final authority regarding jurisdictional designation and permitting requirements. No representation is made by Environmental Inc. beyond that observed during this site investigation. No warranty is expressed or implied.

Figures

Appendix A

Environmental, Inc.

Subject: Whitehouse Road Project Jasper, Walker County, Alabama Environmental, Inc. Project No.: SAI01E2307

Appendix A

NC DWQ Stream Identification Form	Version 4.11		Stream	
Date: November 29th 2023	Project/Site:	hitchouse Road	Latitude: 33	.82146°N
Evaluator: K. Paris	County: Wal	ker	Longitude: 8'	7.26005°W
Total Points:Stream is at least intermittentif ≥ 19 or perennial if $\geq 30^*$ /2.5	Stream Determi Ephemeral Inte	ination (circle one) ermittent Perennial	Other e.g. Quad Name:	
A. Geomorphology (Subtotal =)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	2	3
2. Sinuosity of channel along thalweg	0	1	2	3
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0	1	2	3
4. Particle size of stream substrate	0		2	3
5. Active/relict floodplain	0	1	2	3
6. Depositional bars or benches		1	2	3
7. Recent alluvial deposits	<u>()</u>	1	2	3
8. Headcuts	0	(1)	2	3
9. Grade control	0	0.5	1	1.5
10. Natural valley	0	(0.5)	1	1.5
11. Second or greater order channel		0=0	Yes = 3	
artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = 0.5)				
12. Presence of Baseflow		1	2	3
13. Iron oxidizing bacteria	0	1	2	3
14. Leaf litter	1.5	1	0.5	(0)
15. Sediment on plants or debris	(0)	0.5	1	1.5
16. Organic debris lines or piles	Ũ	0.5	1	1.5
17. Soil-based evidence of high water table?	No	o=0)	Yes	= 3
C. Biology (Subtotal = $$				
18. Fibrous roots in streambed	3	2	1	0
19. Rooted upland plants in streambed	3	(2)	1	0
20. Macrobenthos (note diversity and abundance)	0	1	2	3
21. Aquatic Mollusks	0	1	2	3
22. Fish		0.5	1	1.5
23. Crayfish	(0)	0.5	1	1.5
24. Amphibians	\bigcirc	0.5	1	1.5
25. Algae	\bigcirc	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OB	L = 1.5 (Other = (\mathcal{D}
*perennial streams may also be identified using other method	ls. See p. 35 of manua	al.		H arrow (1997)
Notes:				
Sketch:				

Weak (1) Meak (1) 1 1 1 1 1 1 0.5 0.5 No = 0 1 1 1 1 1 0.5 0.5 No = 0 1	Longitude: 8 Dehnial Other e.g. Quad Name Moderate 2 2 2 2 1 1	$ \begin{array}{c} 7.25997 ^{\circ} \text{W} \\ \hline 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1.5 \\ 1.5 \\ = 3 \\ \hline 3 \\ 0 \\ 1.5 $
rmination (circle on intermittent PerennWeak (1) 1 1 1 1 1 1 1 1 0.5 0.5 $No = 0$	Other e.g. Quad Name Moderate 2 1 1	Strong 3 3 3 3 3 3 3 3 3 3 3 1.5 1.5 3 3 3 1.5 1.5 1.5 1.5 1.5 1.5
Weak (1) 1 (1)	Moderate 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 Yes 2 0.5 1 1	Strong 3 0 1.5 1.5
$ \begin{array}{c} (1) \\ 1 \\ (1) \\ (1) \\ 1 \\ 1 \\ 1 \\ 0.5 \\ \hline 0.5 \\ \hline No = 0 \end{array} $	2 (2) 2 2 2 2 2 2 2 2 2 1 1 1 Yes 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 1.5\\ 1.5\\ = 3\\ \end{array} $
$ \begin{array}{c} 1 \\ (1) \\ (1) \\ 1 \\ 1 \\ 1 \\ 0.5 \\ (0.5) \\ \hline No = 0 \\ \end{array} $	(2) 2 2 2 2 2 2 2 2 2 2 1 1 1 1 Yes 2 2 0.5 1 1 1	$ \begin{array}{c} 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 1.5\\ 1.5\\ 1.5\\ = 3\\ \begin{array}{c} 3\\ 0\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ \hline No = 0 \\ \end{array} $ $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ \overline{(0.5)} \\ \end{array} $	2 2 2 2 2 2 2 2 2 1 1 1 1 Yes 2 2 2 0.5 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} (1) \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ \hline 0.$	2 2 2 2 2 2 1 1 1 1 Yes 2 2 2 0.5 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ \hline 0.5 \\ \hline 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ \hline (0.5) \\ \hline \end{array} $	2 2 2 2 1 1 1 Yes 2 2 2 0.5 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c} 1 \\ 1 \\ 0.5 \\ 0.5 \\ \hline 0.5 \\ \hline 1 \\ 1 \\ 1 \\ 0.5 \\ \hline (0.5) \\ \end{array} $	2 2 2 1 1 1 Yes 2 2 0.5 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c} 1 \\ \hline 1 \\ 0.5 \\ \hline 0.5 \\ \hline 1 \\ 1 \\ 1 \\ 0.5 \\ \hline (0.5) \\ \end{array} $	2 2 1 1 Yes 2 2 0.5 1 1	$ \begin{array}{c c} 3 \\ 3 \\ 1.5 \\ 1.5 \\ = 3 \\ \end{array} $
(1) 0.5 0.5 No = 0) 1 1 1 0.5 (0.5)	2 1 1 Yes 2 2 0.5 1 1	3 1.5 1.5 = 3 3 (0) 1.5 1.5
0.5 0.5 No = 0 1 1 0.5 (0.5)	1 1 Yes 2 2 0.5 1 1	$ \begin{array}{c c} 1.5 \\ 1.5 \\ = 3 \\ \hline 3 \\ \hline 0 \\ 1.5 \\ 1.5 \\ \hline 1.5 \\ 1.5 $
0.5 No = 0 1 1 0.5 (0.5)	1 Yes 2 0.5 1 1	1.5 = 3 3 (0) 1.5
No = 0) 1 1 0.5 (0.5)	Yes 2 2 0.5 1 1	= 3 3 (0) 1.5
1 1 0.5 (0.5)	2 2 0.5 1 1	3 3 (0) 1.5
1 1 0.5 (0.5)	2 2 0.5 1 1	3 3 (0) 1.5
1 1 0.5 (0.5)	2 2 0.5 1 1	3 3 0 1.5
1 1 0.5 (0.5)	2 0.5 1 1	3 (0) 1.5
1 0.5 (0.5)	0.5	0
0.5	1	1.5
(0.5)	1	1.5
· · · ·		1.0
No = 0)	Yes	= 3
2	(1)	0
2	1	0
1	2	3
1	2	3
0.5	1	1.5
0.5	1	1.5
0.5	1	1.5
0.5	1	1.5
FACW = 0.75	OBL = 1.5 Other = 0	0)
nual.		<u> </u>
a	0.5 0.5 0.5 FACW = 0.75; anual.	0.5 1 0.5 1 0.5 1 0.5 1 FACW = 0.75; OBL = 1.5 Other = nanual.

View of Stream 2 (Intermittent).

View of Stream 3.

Environmental, Inc.

Subject: Whitehouse Road Project Jasper, Walker County, Alabama Environmental, Inc. Project No.: SAI01E2307

Appendix A

Date: December 11th 2024	Project/Site: 📈	hitchouse Road	Latitude: 33.	81705°N		
Evaluator: K. Paris	County: Wal	ker	Longitude: 87,260,86°			
Total Points: Stream is at least intermittent 25.75 if \geq 19 or perennial if \geq 30*	Stream Determin Ephemeral Inter	nation (circle one) rmittent Perennial	Other e.g. Quad Name:	Other e.g. Quad Name:		
A. Geomorphology (Subtotal = 13.5)	Absent	Weak	Moderate	Strong		
1 ^{ª.} Continuity of channel bed and bank	0	1	(2)	3		
2. Sinuosity of channel along thalweg	0	1	2	(3)		
3. In-channel structure: ex. riffle-pool, step-pool,	0	1	\bigcirc			
ripple-pool sequence	0		2	3		
4. Particle size of stream substrate	0	(1)	2	3		
5. Active/relict floodplain		1	2	3		
6. Depositional bars or benches	\square	1	2	3		
7. Recent alluvial deposits		1	2	3		
3. Headcuts	0	1	2	3		
9. Grade control	0	0.5	1	1.5		
10. Natural valley	0	0.5	(1)	1.5		
11. Second or greater order channel	No	0 = 0	Yes	= 3		
artificial ditches are not rated; see discussions in manual						
B. Hydrology (Subtotal = <u>つ.う</u>)						
12. Presence of Baseflow		1	2	3		
13. Iron oxidizing bacteria	0	(1)	2	3		
14. Leaf litter	1.5	1	(0.5)	0		
15. Sediment on plants or debris	0	0.5	1	1.5		
16. Organic debris lines or piles	0	0.5	(1)	1.5		
17. Soil-based evidence of high water table?	No	0 = 0	Yes	= 3)		
C. Biology (Subtotal = 6.75)	k					
18. Fibrous roots in streambed	3	(2)	1	0		
19. Rooted upland plants in streambed	(3)	2	1	0		
20. Macrobenthos (note diversity and abundance)	0	$\overline{(1)}$	2	3		
21. Aquatic Mollusks	\bigcirc	1	2	3		
22. Fish		0.5	1	1.5		
23. Crayfish	8	0.5	1	1.5		
24. Amphibians		0.5	1	1.5		
25. Algae	6	0.5	1	1.5		
26 Wetland plants in streamhed		FACW = 0.75;) OB	L = 1.5 Other = ()		
	. See p. 35 of manua	<u> </u>				
*perennial streams may also be identified using other methods						
*perennial streams may also be identified using other methods Notes:	······································					

NC DWQ Stream Identification Form		Stream	, 3			
Date: December 11/2, 2023	Project/Site:	Ihitehouse Road	Latitude: 33	.81864°N		
Evaluator: K. Paris	County: Ma	ker	Longitude: 87,26116 °V			
Total Points:Stream is at least intermittentif ≥ 19 or perennial if ≥ 30*	Stream Determ Ephemeral Inte	ination (circle one) ermittent Perennial	Other e.g. Quad Name			
A. Geomorphology (Subtotal = 5.5)	Absent	Weak	Moderate	Strong		
1 ^{a.} Continuity of channel bed and bank	0		2	3		
2. Sinuosity of channel along thalweg	0	(1)	2	3		
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0		2	3		
4. Particle size of stream substrate	0	\bigcirc	2	3		
5. Active/relict floodplain	0	1	2	3		
6. Depositional bars or benches	\odot	1	2	3		
7. Recent alluvial deposits	\bigcirc	1	2	3		
8. Headcuts	0		2	3		
9. Grade control		0.5	1	1.5		
10. Natural valley	0	0.5	1	1.5		
11. Second or greater order channel	(No = 0)		Yes = 3			
^a artificial ditches are not rated; see discussions in manual						
B. Hydrology (Subtotal = <u>つう</u>)						
12. Presence of Baseflow	(0)	1	2	3		
13. Iron oxidizing bacteria	\bigcirc	1	2	3		
14. Leaf litter	1.5	1	0.5	\bigcirc		
15. Sediment on plants or debris	0	0.5	1	1.5		
16. Organic debris lines or piles	0	0.5	1	1.5		
17. Soil-based evidence of high water table?	N	0=0)	Yes	= 3		
C. Biology (Subtotal = , 3)						
18. Fibrous roots in streambed	3	2	(1)	0		
19. Rooted upland plants in streambed	3	(2)	1	0		
20. Macrobenthos (note diversity and abundance)	(0)	1	2	3		
21. Aquatic Mollusks	(0)	1	2	3		
22. Fish	0	0.5	1	1.5		
23. Crayfish	0	0.5	1	1.5		
24. Amphibians	\bigcirc	0.5	1	1.5		
25. Algae	\bigcirc	0.5	1	1.5		
26. Wetland plants in streambed		FACW = 0.75; OB	L = 1.5 Other = 0	$\overline{\mathcal{O}}$		
*perennial streams may also be identified using other method	s. See p. 35 of manua	al.				
Notes:						
Sketch:						

View of Stream 5.

Environmental, Inc.

Subject: Whitehouse Road Project Jasper, Walker County, Alabama Environmental, Inc. Project No.: SAI01E2307

Appendix A

NC DWQ Stream Identification Form	Version 4.11		Stream	4	
Date: November 29th, 2023	Project/Site: W	hitchouse Road	Latitude: 33	.81766 °N	
Evaluator: K. Paris	County: Wa	ker	Longitude: 8	7.25936°h	
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30* 9.5	Stream Determi Ephemeral Inte	ination (circle one) ermittent Perennial	Other e.g. Quad Name:		
A. Geomorphology (Subtotal = 6)	Absent	Weak	Moderate	Strong	
1 ^a Continuity of channel bed and bank	0	(1)	2	3	
2. Sinuosity of channel along thalweg	0		2	3	
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0	1	2	3	
4. Particle size of stream substrate	0	\bigcirc	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	\odot	1	2	3	
7. Recent alluvial deposits	\bigcirc	1	2	3	
8. Headcuts	0	\bigcirc	2	3	
9. Grade control		0.5	1	1.5	
10. Natural valley	0	0.5	(1)	1.5	
11. Second or greater order channel	No	o=0)	Yes	= 3	
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 0.5)					
12. Presence of Baseflow	\bigcirc	1	2	3	
13. Iron oxidizing bacteria		1	2	3	
14. Leaf litter	1.5	1	0.5	<u> </u>	
15. Sediment on plants or debris	\bigcirc	0.5	1	15	
16. Organic debris lines or piles	0	(0.5)	1	1.5	
17. Soil-based evidence of high water table?		0=0)	Yes	= 3	
C. Biology (Subtotal = 3)					
18. Fibrous roots in streambed	3	2	(1)	0	
19. Rooted upland plants in streambed	3	$\overline{2}$	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	2	3	
21. Aquatic Mollusks	$\overline{0}$	1	2	3	
22. Fish		0.5	1	1.5	
23. Crayfish	$\overline{0}$	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	$\overline{(0)}$	0.5	1	1.5	
26. Wetland plants in streambed		FACW = 0.75; OBI	_ = 1.5 (Other = (57	
*perennial streams may also be identified using other method	is. See p. 35 of manua	al.		e	
Notes:					
Sketch:					

Date: 114 2 27	Depis-4/0it-1	NI D.	1 - 414 - 27	PICAAD.I
Date. December 11th, 2023	December 1112, 2023 Project/Site: Whitehouse Kood		Latitude: こう.	81627 N
Evaluator: K. Paris	County: Wall	2	Longitude: 87	7.26134 %
Total Points: Stream is at least intermittent / () if ≥ 19 or perennial if ≥ 30*	Stream Determir Ephemeral Inter	nation (circle one) mittent Perennial	Other e.g. Quad Name:	
A Geomorphology (Subtotal - 6.5)	Abcont	Mook	Madarata	Charles a
1 ^a Continuity of channel bed and bank	Absent	Weak	woderate	Strong
2 Sinusity of channel along thatwog	0		2	3
3 In-channel structure: ex_riffle-pool_step-pool			2	3
ripple-pool sequence	0		2	3
4. Particle size of stream substrate	0	(1)	2	3
5. Active/relict floodplain	(0)	1	2	3
6. Depositional bars or benches		1	2	3
7. Recent alluvial deposits		1	2	3
8. Headcuts	0 1	<u>(1)</u>	2	3
9. Grade control	0	0.5	1	15
10. Natural valley	0	(0.5)	1	1.5
11. Second or greater order channel	(No	= 0)	Yes = 3	
^a artificial ditches are not rated; see discussions in manual	al 100 = 0			
B. Hydrology (Subtotal = 0.5)				
12. Presence of Baseflow	\bigcirc	1	2	3
13. Iron oxidizing bacteria		1		3
14. Leaf litter	15	1	0.5	
15. Sediment on plants or debris		0.5	1	15
16. Organic debris lines or piles		(0.5)	1	1.5
17. Soil-based evidence of high water table?	No	= 0	Yes = 3	
C. Biology (Subtotal = $\frac{3}{3}$)				
18. Fibrous roots in streambed	3	2		0
19. Rooted upland plants in streambed	3	$\overline{0}$	1	0
20. Macrobenthos (note diversity and abundance)	0	1	2	3
21. Aquatic Mollusks		1	2	3
22. Fish		0.5	- 1	15
23. Crayfish	6	0.5	. 1	1.5
24. Amphibians		0.5	1	1.5
25. Algae		0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75 OR	I = 15 Other = 0	1.0
*perennial streams may also be identified using other met	nods. See p. 35 of manual			and the second se
		•		

Sketch:

View of Stream 6 (Intermittent).

Environmental, Inc.

Subject: Whitehouse Road Project Jasper, Walker County, Alabama Environmental, Inc. Project No.: SAI01E2307

Appendix A

NC DWQ Stream Identification Forn	n Version 4.11	<u></u>	ream 61	Ephemeral,
Date: November 29th 2023	Project/Site:	hitehouse Road	Latitude: 33	.81589°N
Evaluator: K Paris	County: Wall	ter	Longitude: 87.2.5914°	
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determi Ephemeral Inte	nation (circle one) rmittent Perennial	Other e.g. Quad Name	:
A. Geomorphology (Subtotal = 6.5)	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank	0	1	(2)	3
2. Sinuosity of channel along thalweg	0	1	(2)	3
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0	1	2	3
4. Particle size of stream substrate	0	(1)	2	3
5. Active/relict floodplain	(0)	1	2	3
6. Depositional bars or benches	(0)	1	2	3
7. Recent alluvial deposits	\bigcirc	1	2	3
8. Headcuts	0	1	2	3
9. Grade control	(0)	0.5	1	1.5
10. Natural valley	0	(0.5)	1	1.5
11. Second or greater order channel	N	o = 0	Yes	= 3
^a artificial ditches are not rated; see discussions in manual		99999999999999999999999999999999999999		
B. Hydrology (Subtotal =)				
12. Presence of Baseflow	\bigcirc	1	2	3
13. Iron oxidizing bacteria		1	2	3
14. Leaf litter	1.5	1	(0.5)	0
15. Sediment on plants or debris	\bigcirc	0.5	1	1.5
16. Organic debris lines or piles	0	(0.5)	1	1.5
17. Soil-based evidence of high water table?	(No	$\overline{\mathbf{p}} = 0$	Yes	= 3
C. Biology (Subtotal = <u>3</u>)				
18. Fibrous roots in streambed	3	2	(1)	0
19. Rooted upland plants in streambed	3	(2)	1	0
20. Macrobenthos (note diversity and abundance)	\bigcirc	1	2	3
21. Aquatic Mollusks	\overline{O}	1	2	3
22. Fish	\bigcirc	0.5	1	1.5
23. Crayfish	0	0.5	1	1.5
24. Amphibians	0	0.5	1	1.5
25. Algae		0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OBI	_ = 1.5 Other = 1	0)
*perennial streams may also be identified using other method	ds. See p. 35 of manua	al.		
Notes:				
Sketch:				

Date: December 11th, 2023	Project/Site: 📈	hitchouse R.S.	Latitude: 33	.81586°N			
Evaluator: K. Pariz	County: Malla	er	Longitude: 8	7.25995°			
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30* 27.25	Stream Determin Ephemeral (Inter	nation (circle one) rmittent Perennial	Other e.g. Quad Name:				
A. Geomorphology (Subtotal = 13.5)	Absent	Weak	Moderate	Strong			
1 ^a Continuity of channel bed and bank	0	1	(2)	3			
2. Sinuosity of channel along thalweg	0	1	2	3			
3. In-channel structure: ex. riffle-pool, step-pool,	0	4	0				
ripple-pool sequence	U		<u> </u>	3			
4. Particle size of stream substrate	0	(1)	2	3			
5. Active/relict floodplain		1	2	3			
3. Depositional bars or benches		1	2	3			
7. Recent alluvial deposits	(0)	1	2	3			
8. Headcuts	0		2	3			
9. Grade control	0	(0.5)	1	1.5			
10. Natural valley	0	0.5	(1)	1.5			
11. Second or greater order channel	No	0 = 0	(Yes = 3)				
B. Hydrology (Subtotal = 5.5)			_				
			2	3			
13. Iron oxidizing bacteria			2	3			
14. Leaf litter	1.5	(1)	0.5	0			
15. Sediment on plants or debris	(0)	0.5	1	1.5			
16. Organic debris lines or piles	0	(0.5)	1	1.5			
C Dialarse (Outlet the State State)	No) = 0	Yes	= 3			
C. BIOlogy (Subtotal = 3.23)		6		r			
10. Postod upland electe in streambed	3		1	0			
Moorebortheo (rete disesting data to be a second disesting di		2	1	0			
20. Macrobentrios (note diversity and abundance)		1	(2)	3			
		1	2	3			
		0.5	1	1.5			
23. Grayfish	0	0.5	1	1.5			
	0	(0.5)	1	1.5			
	(0)	0.5	1	1.5			
24. Amphibians 25. Algae		26. Wetland plants in streambed (FACW = 0.75;) OBL = 1.5 Other = 0					
24. Amphibians 25. Algae 26. Wetland plants in streambed		FACW = 0.75;) OB	L = 1.5 Other = ()			

Sketch:

View of Stream 7.

Environmental, Inc.

Subject: Whitehouse Road Project Jasper, Walker County, Alabama Environmental, Inc. Project No.: SAI01E2307

Appendix A

NC DWQ Stream Identification Form	Str	eam 7			
Date: November 29th, 2023	Project/Site: //	hitchouse RJ	Latitude: 33,81701 °N		
Evaluator: K. Paris	County: Wal	ker	Longitude: 87, 25854°W		
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determi Ephemeral Inte	nation (circle one) rmittent Perennial	Other e.g. Quad Name:		
A. Geomorphology (Subtotal = 7)	Absent	Weak	Moderate	Strong	
1 ^a . Continuity of channel bed and bank	0	(1)	2	3	
2. Sinuosity of channel along thalweg	0	1	(2)	3	
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3	
4. Particle size of stream substrate	0	(1)	2	3	
5. Active/relict floodplain	(0)	1	2	3	
6. Depositional bars or benches	(0)	1	2	3	
7. Recent alluvial deposits	(0)	1	2	3	
8. Headcuts	0		2	3	
9. Grade control	\bigcirc	0.5	1	1.5	
10. Natural valley	0	0.5	(1)	1.5	
11. Second or greater order channel	No	$\overline{0} = 0$	Yes	= 3	
^a artificial ditches are not rated; see discussions in manual	l		· · · · · · · · · · · · · · · · · · ·		
B. Hydrology (Subtotal = $0, 5$)					
12. Presence of Baseflow	\bigcirc	1	2	3	
13. Iron oxidizing bacteria	Ŏ	1	2	3	
14. Leaf litter	1.5	1	0.5	$\overline{\mathbf{O}}$	
15. Sediment on plants or debris	(0)	0.5	1	1.5	
16. Organic debris lines or piles	0	(0.5)	1	1.5	
17. Soil-based evidence of high water table?	(No	p=0)	Yes = 3		
C. Biology (Subtotal = 4)					
18. Fibrous roots in streambed	3	(2)	1	0	
19. Rooted upland plants in streambed	3	(2)	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	2	3	
21. Aquatic Mollusks		1	2	3	
22. Fish	0	0.5	1	1.5	
23. Crayfish	$\overline{0}$	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	\bigcirc	0.5	1	1.5	
26. Wetland plants in streambed	1	FACW = 0.75; OBI	_ = 1.5 (Other = 0	$\overline{\mathbf{b}}$	
*perennial streams may also be identified using other method	ls. See p. 35 of manua	l.			
Notes:					
Sketch:					

.

Appendix B

View of Wetland 1.

Environmental, Inc.

Subject: Whitehouse Road Project Jasper, Walker County, Alabama Environmental, Inc. Project No.: SAI01E2307

Appendix B

Wetland Photographs

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Whitehouse Road	City/County: Jasper/Walker Sampling Date: 11/29/2023
Applicant/Owner: Sain	State: AL Sampling Point: Wet 1
Investigator(s): K. Paris Se	ction, Township, Range: S22, T14S, R7W
Landform (hillside, terrace, etc.): terrace Local	relief (concave, convex, none): <u>concave</u> Slope (%): <u>15-45</u>
Subregion (LRR or MLRA): LRR N, MLRA 129 Lat: 33.81595° N	Long: 87.25691° W Datum: WGS 84
Soil Map Unit Name: Sunlight-Townley complex, 15-45% slopes	NWI classification: none
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly distur	bed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrologynaturally problema	atic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing san	npling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes <u>X</u> No		
Remarks: Abuts Stream 5. Within a transmission line easement, overstory and midstory have been removed.					

HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is requ	ired; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)
X Saturation (A3)	Oxidized Rhizospheres on Living Roo	ots (C3) Moss Trim Lines (B16)
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils	(C6) Crayfish Burrows (C8)
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)		Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B	7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)		Microtopographic Relief (D4)
Aquatic Fauna (B13)		X FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes	No X Depth (inches):	
Water Table Present? Yes	No X Depth (inches):	
Saturation Present? Yes X	No Depth (inches): 7	Wetland Hydrology Present? Yes X No
(includes capillary fringe)		
Describe Recorded Data (stream gauge, m	onitoring well, aerial photos, previous inspe	ctions), if available:
		,, ,,
Remarks:		

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: Wet 1

<u>Tree Stratum</u> (Plot size: NA)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1				Number of Dominant Species
2.				That Are OBL, FACW, or FAC:3 (A)
3 4.				Total Number of Dominant Species Across All Strata: 3 (B)
5.				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 100.0% (A/B)
7				Prevalence Index worksheet:
	:	=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species x 1 =0
Sapling/Shrub Stratum (Plot size: NA)				FACW species 100 x 2 = 200
1				FAC species 0 $x 3 = 0$
2				FACU species x 4 =
3				UPL species x 5 =
4				Column Totals: 100 (A) 200 (B)
5				Prevalence Index = B/A = 2.00
6.				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				X 3 - Prevalence Index is ≤3.0
	;	=Total Cover		4 - Morphological Adaptations' (Provide supporting
50% of total cover:	20%	of total cover:		Broblematic Hydrophytic Vegetation ¹ (Evaluate)
<u>Andropogon domeratuo</u>	25	Vee		
Andropogon giomeratus Saccharum gigantoum	30	Voc		'Indicators of hydric soil and wetland hydrology must be
2. Salidaga diganteum		No		present, unless disturbed of problematic.
	25	Voc		
		165	TACW	Iree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH) regardless of
5				height.
7				Or a line (Ohmah - Missika a landa - a shekari a shekari
7				Sapling/Snrub – woody plants, excluding vines, less than 3 in DBH and greater than or equal to 3.28 ft
a				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
	100 :	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 50	20%	of total cover:	20	height.
Woody Vine Stratum (Plot size: NA)				
1.				
2.				
3.				
4.				
5.				Underschutig
		=Total Cover		Hydrophytic Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a sepa	rate sheet)			

Profile Desci	ription: (Describe t	o the dep	oth needed to docu	ument th	ne indica	tor or co	onfirm the abse	ence of indicators.)
Depth	Matrix		Redox Features					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-12	10yr 4/2	80	10yr 4/6	20	D	М	Loamy/Claye	әу
	ncentration D-Den	etion RM	-Reduced Matrix	AS-Masl	ked Sand	Grains	2L O	cation: PI -Pore Lining M-Matrix
Hydric Soil I	ndicators:			10-11100				Indicators for Problematic Hydric Soils ³ :
Histosol (A1)		Polvvalue Be	elow Sur	face (S8)	(MLRA	147, 148)	2 cm Muck (A10) (MLRA 147)
Histic Epi	pedon (A2)		Thin Dark Su	urface (S	9) (MLR	A 147, 14	48)	Coast Prairie Redox (A16)
Black His	tic (A3)		Loamy Muck	y Minera	al (F1) (N	ILRA 13	6)	(MLRA 147, 148)
Hydroger	n Sulfide (A4)		Loamy Gley	ed Matrix	k (F2)			Piedmont Floodplain Soils (F19)
Stratified	Layers (A5)		X Depleted Ma	trix (F3)				(MLRA 136, 147)
2 cm Muc	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Parent Material (F21)
Depleted	Below Dark Surface	(A11)	Depleted Da	rk Surfa	ce (F7)			(outside MLRA 127, 147, 148)
Thick Da	rk Surface (A12)		Redox Depre	essions ((F8)			Very Shallow Dark Surface (F22)
Sandy M	ucky Mineral (S1)		Iron-Mangar	ese Mas	sses (F12	2) (LRR N	Ν,	Other (Explain in Remarks)
Sandy GI	eyed Matrix (S4)		MLRA 136	6)				
Sandy Re	edox (S5)		Umbric Surfa	ace (F13) (MLRA	122, 136	6)	³ Indicators of hydrophytic vegetation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F	19) (MLR	RA 148)	wetland hydrology must be present,
Dark Sur	face (S7)		Red Parent	Material	(F21) (M	LRA 127	′, 147, 148)	unless disturbed or problematic.
Restrictive L	ayer (if observed):							
Туре:								
Depth (in	ches):						Hydric Soil	Present? Yes X No
Remarks:								

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

Appendix C

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Whitehouse Road	City/County: Jasper/Walker Sampling Date: 11/29/20			
Applicant/Owner: Sain	State: AL	Sampling Point: Upland 1		
Investigator(s): K. Paris	Section, Township, Range: S22, T14S, R7W			
Landform (hillside, terrace, etc.): hillside	ocal relief (concave, convex, none): <u>convex</u>	Slope (%): 15-45		
Subregion (LRR or MLRA): LRR N, MLRA 129 Lat: 33.81678° N	Long: <u>87.26009</u> ° W	Datum: WGS 84		
Soil Map Unit Name: Sunlight-Townley complex, 15-45% slopes	NWI classific	ation: none		
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes <u>X</u> No (If no	, explain in Remarks.)		
Are Vegetation, Soil, or Hydrologysignificantly d	listurbed? Are "Normal Circumstances" preser	it? Yes X No		
Are Vegetation, Soil, or Hydrologynaturally prob	elematic? (If needed, explain any answers in F	Remarks.)		
SUMMARY OF FINDINGS – Attach site map showing	sampling point locations, transects, in	nportant features, etc.		
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area			
Hydric Soil Present? Yes No X	within a Wetland? Yes	No X		
Wetland Hydrology Present? Yes No X				
Remarks:				
within an open held, overstory and midstory have been removed.				
HYDROLOGY				

Wetland Hydrology Indica	tors:				Secondary Indicators (m	inimum of two required)	
Primary Indicators (minimur	<u>n of one is requi</u>	red; check all	that apply)		Surface Soil Cracks	(B6)	
Surface Water (A1)		True Ac	quatic Plants (B14)		Sparsely Vegetated	Concave Surface (B8)	
High Water Table (A2)		Hydrog	en Sulfide Odor (C1)		Drainage Patterns (B10)		
Saturation (A3)		Oxidize	d Rhizospheres on Living I	Roots (C3)	Moss Trim Lines (B	16)	
Water Marks (B1)		Presen	ce of Reduced Iron (C4)		Dry-Season Water 1	Table (C2)	
Sediment Deposits (B2))	Recent	Iron Reduction in Tilled Sc	oils (C6)	Crayfish Burrows (C	8)	
Drift Deposits (B3)		Thin Mu	uck Surface (C7)		Saturation Visible or	n Aerial Imagery (C9)	
Algal Mat or Crust (B4)		Other (I	Explain in Remarks)		Stunted or Stressed	Plants (D1)	
Iron Deposits (B5)					Geomorphic Position	n (D2)	
Inundation Visible on A	erial Imagery (B	7)			Shallow Aquitard (D	3)	
Water-Stained Leaves	(B9)				Microtopographic Re	elief (D4)	
Aquatic Fauna (B13)					FAC-Neutral Test (D	05)	
Field Observations:							
Surface Water Present?	Yes	No <u>X</u>	Depth (inches):				
Water Table Present?	Yes	No <u>X</u>	Depth (inches):				
Saturation Present?	Yes	No <u>X</u>	Depth (inches):	Wetland	I Hydrology Present?	Yes No X	
(includes capillary fringe)							
Describe Recorded Data (st	ream gauge, mo	onitoring well,	aerial photos, previous ins	pections), if a	available:		
Develop							
Remarks:							

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: Upland 1

	Absolute	Dominant	Indicator	Deminence Test werkehest
<u>Tree Stratum</u> (Plot size: <u>NA</u>)	% Cover	Species?	Status	Dominance Test Worksneet:
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
3.				Total Number of Dominant
4.				Species Across All Strata: <u>3</u> (B)
5.				Percent of Dominant Species
6			,	That Are OBL, FACW, or FAC:66.7% (A/B)
7			·	Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 3m)				FACW species 0 x 2 = 0
1. Pinus taeda	5	Yes	FAC	FAC species 60 x 3 = 180
2				FACU species x 4 =160
3				UPL species x 5 =
4				Column Totals: 100 (A) 340 (B)
5				Prevalence Index = B/A = 3.40
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
	5	=Total Cover		4 - Morphological Adaptations' (Provide supporting
50% of total cover: <u>3</u>	20%	of total cover:	1	
Herb Stratum (Plot size: 1m)				Problematic Hydrophytic Vegetation' (Explain)
1. Andropogon virginicus	25	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Paspalum dilatatum	55	Yes	FAC	present, unless disturbed or problematic.
3. Rubus argutus	15	NO	FACU	Definitions of Four Vegetation Strata:
4.	,			Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				height.
6				
/				Sapling/Shrub – Woody plants, excluding vines, less than 3 in DBH and greater than or equal to 3 28 ft
o				(1 m) tall.
10				Harb - All herbaceous (non-woody) plants, regardless
10.				of size, and woody plants less than 3.28 ft tall.
	95	=Total Cover	·	Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 48	20%	of total cover:	19	height.
Woody Vine Stratum (Plot size: NA)				
1. <u> </u>				
2.				
3.			, ,	
4.				
5.			,	
		=Total Cover	,	Hydrophytic Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a senal	ate sheet)			
	ale sheet.)			

SOIL

Profile Description: (Describe to the de	oth needed to docume	nt the indica	tor or co	onfirm the absen	ce of indicators.)
Depth Matrix	Redox Fea	atures			
(inches) Color (moist) %	Color (moist) %	6 Type ¹	Loc ²	Texture	Remarks
0-12 10yr 5/4 100				Loamy/Clayey	
			<u> </u>		
¹ Type: C=Concentration, D=Depletion, RM	=Reduced Matrix, MS=N	Aasked Sand	Grains.	² Loca	tion: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:				Ir	ndicators for Problematic Hydric Soils ³ :
Histosol (A1)	Polyvalue Below	Surface (S8)	(MLRA [·]	147, 148)	2 cm Muck (A10) (MLRA 147)
Histic Epipedon (A2)	Thin Dark Surfac	e (S9) (MLR	A 147, 14		Coast Prairie Redox (A16)
Black Histic (A3)	Loamy Mucky Mi	neral (F1) (N	LRA 136) —	
Hydrogen Sulfide (A4)	Loamy Gleyed M	atrix (F2)			Piedmont Floodplain Soils (F19)
Stratified Layers (A5)	Depleted Matrix ((F3)		_	(MLRA 136, 147)
2 cm Muck (A10) (LRR N)	Redox Dark Surfa	ace (F6)			Red Parent Material (F21)
Depleted Below Dark Surface (A11)	Depleted Dark S	urface (F7)		_	(outside MLRA 127, 147, 148)
Thick Dark Surface (A12)	Redox Depressio	ons (F8)			Very Shallow Dark Surface (F22)
Sandy Mucky Mineral (S1)	Iron-Manganese	Masses (F12) (LRR N	, <u> </u>	Other (Explain in Remarks)
Sandy Gleyed Matrix (S4)	MLRA 136)				
Sandy Redox (S5)	Umbric Surface (F13) (MLRA	122, 136) ³ I	Indicators of hydrophytic vegetation and
Stripped Matrix (S6)	Piedmont Floodp	lain Soils (F1	9) (MLR	A 148)	wetland hydrology must be present,
Dark Surface (S7)	Red Parent Mate	rial (F21) (M	LRA 127,	147, 148)	unless disturbed or problematic.
Restrictive Laver (if observed):					
Depth (inches):				Hydric Soil Pr	resent? Yes No X
Remarks:			l		

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Whitehouse Road	City/County:	Jasper/Walker Sampling Date: 11/29/2023
Applicant/Owner: Sain		State: AL Sampling Point: Upland 2
Investigator(s): K. Paris	Section, Townshi	p, Range: S22, T14S, R7W
Landform (hillside, terrace, etc.): level	Local relief (concave	e, convex, none): level Slope (%): 15-45
Subregion (LRR or MLRA): LRR N, MLRA 129	Lat: 33.81832° N	Long: 87.25932° W Datum: WGS 84
Soil Map Unit Name: Sunlight-Townley complex	– , 15-45% slopes	NWI classification: none
Are climatic / hydrologic conditions on the site ty	Dical for this time of year? Ye	es X No (If no, explain in Remarks.)
Are Vegetation . Soil . or Hydrology	significantly disturbed? Are	"Normal Circumstances" present? Yes X No
Are Vegetation Soil or Hydrology	naturally problematic? (If no	eeded, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach si	e map snowing sampling poin	it locations, transects, important features, etc.
Hydrophytic Vegetation Present? Ye	s X No Is the Sampled	I Area
Hydric Soil Present? Ye	s No X within a Wetla	nd? Yes No X
Wetland Hydrology Present? Ye	s X No	
HYDROLOGY		
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required;	check all that apply)	Surface Soil Cracks (B6)
X Surface Water (A1)	True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)
X Saturation (A3)	Oxidized Rhizospheres on Living Root	s (C3) Moss Trim Lines (B16)
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils (C6) Crayfish Burrows (C8)
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)		Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3)
Water-Stained Leaves (B9)		Microtopographic Relief (D4)
Aquatic Fauna (B13)		X FAC-Neutral Test (D5)

Field Observations:

Surface Water Present?	Yes X	No	Depth (inches):	2		
Water Table Present?	Yes	No X	Depth (inches):			
Saturation Present?	Yes X	No	Depth (inches):	0	Wetland Hydrology Present?	Yes X No
(includes capillary fringe)						
Describe Recorded Data (s	stream gauge, m	onitoring well	, aerial photos, prev	ious insp	ections), if available:	
Remarks:						

Т

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: Upland 2

Tree Stratum (Plot size: NA)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet
1.	/0 00101	Openico.	Olalus	Number of Deminent Creation
2.				That Are OBL, FACW, or FAC:3 (A)
3				Total Number of Dominant
4		·		Species Across All Strata: <u>3</u> (B)
5		·		Percent of Dominant Species
0				Provalance Index worksheet:
/:		-Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		$\frac{1}{\text{OBL species}} 20 \qquad \text{x1} = 20$
Sapling/Shrub Stratum (Plot size: NA)				FACW species 50 $x 2 = 100$
1. <u> </u>				FAC species $0 x 3 = 0$
2.				FACU species $0 x 4 = 0$
3.				UPL species $0 x 5 = 0$
4.				Column Totals: 70 (A) 120 (B)
5.	,			Prevalence Index = $B/A = 1.71$
6.				Hvdrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				X 2 - Dominance Test is >50%
9.				3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 1m)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Eleocharis obtusa	20	Yes	OBL	¹ Indicators of hydric soil and wetland hydrology must be
2. Cyperus pseudovegetus	35	Yes	FACW	present, unless disturbed or problematic.
3. Scirpus cyperinus	15	Yes	FACW	Definitions of Four Vegetation Strata:
4		,		Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of
6				neight.
7		·		Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
9				(1 m) tail.
10				Herb – All herbaceous (non-woody) plants, regardless
11				
	/0	= I otal Cover		Woody Vine – All woody vines greater than 3.28 ft in height
50% of total cover: 3	<u> </u>	of total cover:	14	Toight.
Woody Vine Stratum (Plot size: NA)				
1				
2				
3				
4.				
5				Hydrophytic
		= I otal Cover		Vegetation
50% of total cover.	20%	or total cover.		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL

Profile Desc	ription: (Describe	the dep	oth needed to docu	ument tl	he indica	tor or co	onfirm the abs	ence of indi	cators.)	
Depth	Matrix		Redo	x Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Ren	narks
0-12	7.5yr 5/6	100					Loamy/Clay	ey		
		<u> </u>								
		<u> </u>								
¹ Type: C=Co	ncentration D=Depl	etion RM	=Reduced Matrix N	IS=Mas	ked Sand	Grains	2L 0	cation: PI =	Pore Lining	M=Matrix
Hydric Soil I	ndicators:					Craino.		Indicators	for Problem	atic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Be	elow Sur	face (S8	(MLRA	147, 148)	2 cm M	luck (A10) (M	LRA 147)
Histic Ep	ipedon (A2)		Thin Dark Su	urface (S	59) (MLR	A 147, 14	48)	Coast I	Prairie Redox	(A16)
Black His	tic (A3)		Loamy Muck	xy Minera	al (F1) (N	ILRA 136	5)	(MLF	RA 147, 148)	
Hydroger	n Sulfide (A4)		Loamy Gley	ed Matriz	x (F2)			Piedmo	ont Floodplair	n Soils (F19)
Stratified	Layers (A5)		Depleted Ma	trix (F3)				(MLF	RA 136, 147)	
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Pa	arent Material	(F21)
Depleted	Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)			(outs	ide MLRA 1	27, 147, 148)
Thick Da	rk Surface (A12)		Redox Depre	essions	(F8)			Very S	hallow Dark S	Surface (F22)
Sandy M	ucky Mineral (S1)		Iron-Mangar	ese Ma	sses (F12	2) (LRR N	١,	Other (Explain in Re	marks)
Sandy Gl	eyed Matrix (S4)		MLRA 136	5)						
Sandy Re	edox (S5)		Umbric Surfa	ace (F13	B) (MLRA	122, 136	5)	³ Indicators	of hydrophyti	c vegetation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F	9) (MLR	A 148)	wetland	d hydrology m	lust be present,
Dark Sur	face (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless	disturbed or	problematic.
Restrictive L	ayer (if observed):									
Type:										
Depth (in	ches):						Hydric Soil	Present?	Yes	<u>No X</u>
Remarks:										

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Whitehouse Road		City/County: Jasper/	Walker	Sampling Date: 12/11/2023		
Applicant/Owner: Sain			State: AL	Sampling Point: Upland 3		
Investigator(s): K. Paris		Section, Township, Rang	ge: S22, T14S, R7W			
Landform (hillside, terrace, etc.): valley	Lo	cal relief (concave, conve	ex. none): concave	Slope (%): 15-45		
Subregion (I RR or MI RA): I RR N MI RA 1	20 Lat: 33 81672° N		* 87 26198° W	Olope (76)		
Call Man Link Name: Sunlight Townlow com	29 Lat. 00.01012 1.	<u>_</u>	NIM/L classifica			
Soll Map Unit Name. Sumight-Townley Comp	DIEX, 15-45% SIUPES			tion: <u>none</u>		
Are climatic / hydrologic conditions on the site	stypical for this time of year	ar? Yes <u>x</u>	No (If no, e	explain in Remarks.)		
Are Vegetation, Soil, or Hydro	logy significantly dis	sturbed? Are "Norma	l Circumstances" present?	? Yes X No		
Are Vegetation, Soil, or Hydro	logynaturally proble	ematic? (If needed,	explain any answers in Re	emarks.)		
SUMMARY OF FINDINGS – Attach	site map showing s	ampling point loca	tions, transects, im	portant features, etc.		
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area				
Hvdric Soil Present?	Yes No X	within a Wetland?	Yes	No X		
Wetland Hydrology Present?	Yes No X					
Remarks:						
Forested upland that is upgradient of Stream	ı 5.					
HYDROLOGY						
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)		
Primary Indicators (minimum of one is requir	ed; check all that apply)		Surface Soil Crac	ks (B6)		
Surface Water (A1)	True Aquatic Plants	(B14)	Sparsely Vegetate	ed Concave Surface (B8)		
High Water Table (A2)	Hydrogen Sulfide Od	lor (C1)	Drainage Patterns	s (B10)		
Saturation (A3)	Oxidized Rhizospher	es on Living Roots (C3)	Moss Trim Lines	(B16)		
Water Marks (B1)	Presence of Reduce	d Iron (C4)	Dry-Season Wate	r Table (C2)		
Sediment Deposits (B2)	Recent Iron Reduction	on in Tilled Soils (C6)	Crayfish Burrows	(C8)		
Drift Deposits (B3)	Thin Muck Surface (27)	Saturation Visible on Aerial Imagery (C9)			
Algal Mat or Crust (B4)	Other (Explain in Rer	marks)	Stunted or Stress	ed Plants (D1)		
Iron Deposits (B5)			Geomorphic Posit	tion (D2)		
Inundation Visible on Aerial Imagery (B7	′)		Shallow Aquitard	(D3)		
Water-Stained Leaves (B9)			Microtopographic	Relief (D4)		
Aquatic Fauna (B13)			FAC-Neutral Test	(D5)		
Field Observations:						
Surface Water Present? Yes	No X Depth (inche	es):				
Water Table Present? Yes	No X Depth (inche	es):				
Saturation Present? Yes	No X Depth (inche	es): Wetlan	d Hydrology Present?	Yes <u>No X</u>		
(includes capillary fringe)						
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos	, previous inspections), ir	available:			
Remarks:						

VEGETATION (Four Strata) - Use scientific names of plants.

Sampling Point: Upland 3

, , ,	Absoluto	Dominant	Indicator	
Tree Stratum (Plot size: 5m)	% Cover	Species?	Status	Dominance Test worksheet
	20	<u> </u>		Dominando rest worksheet.
1. Liquidambar styraciliua	30	res	FAC	Number of Dominant Species
2. Quercus nigra	40	Yes	FAC	That Are OBL, FACW, or FAC:5(A)
3. Acer rubrum	25	Yes	FAC	Total Number of Dominant
4				Species Across All Strata: 7 (B)
5.				Percent of Dominant Species
6				That Are OBL_EACW_or EAC: 71.4% (A/B)
7				Brevalence Index worksheet:
··		Total Causer		
	90			
50% of total cover:	48 20%	of total cover:	19	OBL species $0 x 1 = 0$
Sapling/Shrub Stratum (Plot size: 3m)			FACW species 0 x 2 = 0
1. Liquidambar styraciflua	15	Yes	FAC	FAC species 130 x 3 = 390
2. Ligustrum sinense	10	Yes	FACU	FACU species 20 x 4 = 80
3.				UPL species $0 x 5 = 0$
4				Column Totals: 150 (A) 470 (B)
5				$\frac{1}{2} = \frac{1}{2} = \frac{1}$
·				Induction Indicators
6				Hydrophytic vegetation indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
	25	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	13 20%	of total cover:	5	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 1m)				Problematic Hydrophytic Vegetation ¹ (Explain)
	20	Vee		
		res	FAC	¹ Indicators of hydric soil and wetland hydrology must be
2. Polystichum acrostichoides	10	Yes	FACU	present, unless disturbed or problematic.
3				Definitions of Four Vegetation Strata:
4				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sanling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
				(1 m) tall.
9				
10	. <u></u>			Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 5.26 it tall.
	30	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover:	15 20%	of total cover:	6	height.
Woody Vine Stratum (Plot size: NA)				
<u> </u>				
2				
2				
· · · · · · · · · · · · · · · · · · ·				
4	. <u> </u>			
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Romarka: (Include photo numbero horo or on a con	arata abaat)			
Remarks. (include photo numbers here of on a sep-	arate sneet.)			

Profile Desc	ription: (Describe	to the dep	oth needed to docu	ument th	ne indica	tor or co	onfirm the abs	ence of ind	icators.)		
Depth	Matrix		Redo	x Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		F	lemarks	
0-4	10yr 4/3	100					Loamy/Clay	/ey			
4-12	10vr 5/6	100					Loamy/Clay	/ev			
	1091 0/0						Loamyrolay				
		<u> </u>									
		<u> </u>									
¹ Type: C=Co	ncentration D=Depl	etion RM	=Reduced Matrix N	IS=Masl	ked Sand	Grains	² l (cation: PI =	Pore Lining	n M=Mati	rix
Hydric Soil I	ndicators:			10 11.0.0		U IGHIO		Indicators	for Proble	matic Hy	/dric Soils ³ :
Histosol	(A1)		Polyvalue Be	elow Sur	face (S8)	(MLRA	147, 148)	2 cm I	Muck (A10)	(MLRA 1	47)
Histic Ep	ipedon (A2)		Thin Dark Su	urface (S	9) (MLR	A 147, 14	48)	Coast	Prairie Rec	、 lox (A16)	,
Black His	stic (A3)		Loamy Muck	y Minera	al (F1) (N	LRA 136	6)	(ML	RA 147, 14	8)	
Hydroger	n Sulfide (A4)		Loamy Gley	ed Matrix	(F2)			Piedm	ont Floodpl	ain Soils	(F19)
Stratified	Layers (A5)		Depleted Ma	trix (F3)				(ML	RA 136, 14	7)	
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red P	arent Matei	ial (F21)	
Depleted	Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)			(out	side MLRA	127, 147	7, 148)
Thick Da	rk Surface (A12)		Redox Depre	essions ((F8)			Very S	Shallow Dar	k Surface	(F22)
Sandy M	ucky Mineral (S1)		Iron-Mangar	ese Mas	sses (F12) (LRR N	١,	Other	(Explain in	Remarks)
Sandy G	eyed Matrix (S4)		MLRA 136	5)							
Sandy Re	edox (S5)		Umbric Surfa	ace (F13) (MLRA	122, 136	5)	³ Indicators	of hydroph	ytic veget	tation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F1	9) (MLR	A 148)	wetlan	d hydrology	/ must be	present,
Dark Sur	face (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless	disturbed	or problen	natic.
Restrictive L	ayer (if observed):										
Type:											
Depth (in	ches):						Hydric Soil	Present?	Yes	N	o_X_
Remarks:									_		

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Whitehouse Road	City/County: Jasper/Walker Sampling Date: 12/1	1/2023
Applicant/Owner: Sain	State: AL Sampling Point: Up	land 4
Investigator(s): K. Paris Sec	ction, Township, Range: <u>S22, T14S, R7W</u>	
Landform (hillside, terrace, etc.): valley Local r	relief (concave, convex, none): <u>concave</u> Slope (%): <u>1</u>	5-45
Subregion (LRR or MLRA): LRR N, MLRA 129 Lat: 33.81566° N	Long: 87.2574° W Datum: WG	S 84
Soil Map Unit Name: Sunlight-Townley complex, 15-45% slopes	NWI classification: none	
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrologysignificantly disturb	bed? Are "Normal Circumstances" present? Yes X No	
Are Vegetation, Soil, or Hydrologynaturally problema	tic? (If needed, explain any answers in Remarks.)	
SUMMARY OF FINDINGS – Attach site map showing sam	npling point locations, transects, important features,	etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No X No X No X	Is the Sampled Area within a Wetland?	Yes	NoX
Remarks: Upland within transmission line easement	t, overstory a	Ind midstory hav	ve been removed.		

HYDROLOGY

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is requi	red; check all that apply)		Surface Soil Cracks (B6)
Surface Water (A1)	True Aquatic Plants (B14)		Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Odor (C1)		Drainage Patterns (B10)
Saturation (A3)	Oxidized Rhizospheres on Living Ro	oots (C3)	Moss Trim Lines (B16)
Water Marks (B1)	Presence of Reduced Iron (C4)		Dry-Season Water Table (C2)
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils	s (C6)	Crayfish Burrows (C8)
Drift Deposits (B3)	Thin Muck Surface (C7)		Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remarks)		Stunted or Stressed Plants (D1)
Iron Deposits (B5)			Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B	7)		Shallow Aquitard (D3)
Water-Stained Leaves (B9)			Microtopographic Relief (D4)
Aquatic Fauna (B13)			FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes	No X Depth (inches):		
Water Table Present? Yes	No X Depth (inches):		
Saturation Present? Yes	No X Depth (inches):	Wetland	Hydrology Present? Yes No X
(includes capillary fringe)			
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe	ections), if a	vailable:
Remarks:			

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: Upland 4

Tree Stratum (Plot size: NA)	Absolute % Cover	Dominant	Indicator Status	Dominance Test worksheet:
		Sheries:	Status	
2				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3.				Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
5				Percent of Dominant Species
6				Inat Are OBL, FACW, or FAC: 0.0% (A/B)
<i>I</i>		Total Cover		Total % Cover of: Multiply by:
50% of total cover	20%	of total cover		101017600000000000000000000000000000000
Sapling/Shrub Stratum (Plot size: 3m)				FACW species $35 \times 2 = 70$
1. Ulmus alata	5	Yes	FACU	FAC species $0 \times 3 = 0$
2.				FACU species $35 \times 4 = 140$
3.				UPL species $0 \times 5 = 0$
4.				Column Totals: 70 (A) 210 (B)
5.				Prevalence Index = $B/A = 3.00$
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
۲. ۹				2 - Dominance Test is >50%
a .				$3 - $ Prevalence Index is $< 3.0^{1}$
·	5	-Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 3	20%	of total cover	1	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 1m)			<u> </u>	Problematic Hydrophytic Vegetation ¹ (Explain)
1. Smilax bona-nox	10	No	FACU	1
2. Rubus arautus	20	Yes	FACU	present. unless disturbed or problematic.
3. Solidago gigantea	15	No	FACW	Definitions of Four Vegetation Strata:
4. Verbena brasiliensis	10	No	FACW	Tree – Woody plants excluding vines 3 in. (7.6 cm) or
5. Panicum anceps	30	Yes	FAC	more in diameter at breast height (DBH), regardless of
6. Juncus effusus	10	No	FACW	height.
7.				Sanling/Shrub - Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
	95	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 48	20%	of total cover:	19	height.
Woody Vine Stratum (Plot size: NA)				
1.				
2.				
3.				
4.				
5.				Ibeleashatia
	:	=Total Cover		Hydrophytic Vegetation
50% of total cover:	20%	of total cover:		Present? Yes No X
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

SOIL

Depth	Matrix		Redo	x Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remar	ks
0-12	10yr 5/6	100					Loamy/Claye	ey		
		<u> </u>								
						<u> </u>				
		<u> </u>								
		<u> </u>				<u> </u>				
Type: C=Co	ncentration, D=Depl	letion, RM	=Reduced Matrix, I	/IS=Mas	ked Sand	Grains.	² Lo	cation: PL=Pc	ore Lining, M=	Matrix.
lydric Soil li	ndicators:							Indicators fo	r Problematio	c Hydric Soil
Histosol ((A1)		Polyvalue B	elow Sur	face (S8)	(MLRA	147, 148)	2 cm Mu	ck (A10) (MLF	RA 147)
Histic Epi	ipedon (A2)		Thin Dark S	urface (S	69) (MLR	A 147, 14	48)	Coast Pra	airie Redox (A	16)
Black His	tic (A3)		Loamy Muc	ky Minera	al (F1) (N	ILRA 136	5)	(MLRA	147, 148)	
Hydroger	n Sulfide (A4)		Loamy Gley	ed Matriz	x (F2)			Piedmon	Floodplain S	oils (F19)
Stratified	Layers (A5)		Depleted Ma	atrix (F3)				(MLRA	136, 147)	
2 cm Muo	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Pare	nt Material (F	21)
Depleted	Below Dark Surface	e (A11)	Depleted Da	irk Surfa	ce (F7)			(outsid	e MLRA 127,	147, 148)
Thick Da	rk Surface (A12)		Redox Depr	essions	(F8)			Very Sha	llow Dark Sur	face (F22)
Sandy M	ucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F12	2) (LRR N	١,	Other (E)	plain in Rema	arks)
Sandy Gl	eyed Matrix (S4)		MLRA 13	6)						
Sandy Re	edox (S5)		Umbric Surf	ace (F13	B) (MLRA	122, 136	5)	³ Indicators of	hydrophytic v	egetation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F1	19) (MLR	, A 148)	wetland h	vdrology mus	t be present,
Dark Sur	face (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless di	sturbed or pro	blematic.
Restrictive L	ayer (if observed):									
Type:										

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.